Кислород в двигатель автомобиля

Кислород в двигатель автомобиля

Кислородно-масляный двигатель относится к области машиностроения, а в частности к двигателестроению. Техническим результатом является повышение кпд и снижение токсичности отработавших газов. Сущность изобретения заключается в том, что двигатель питается кислородно-воздушной смесью, сжатой до степени осуществления цепной реакции молекул углерода машинных масел, поданных как микродоза в камеру сжатия при достижении поршнем верхнего положения. Подача кислорода при запуске осуществляется из кислородного баллона, а при устойчивой работе двигателя включается компрессор, который находится в камере с набором молекулярных сит и модулей мембран, очищающих атмосферный кислород от азота, и который пополняет кислород в баллоне. 2 ил.

Рисунки к патенту РФ 2400639

Изобретение относится к машиностроению, в частности к двигателестроению, и позволяет, используя цепную реакцию углерода масел с кислородом, повысить мощность, уменьшить токсичность на различных режимах работы двигателя и на холостом ходу.

Известен кислородно-масляный двигатель, содержащий аналогично двухтактному двигателю один или несколько цилиндров с впускными и выпускными клапанами, поршнем, кинематически связанными с коленчатым валом, приводящим во вращение при помощи шестерен распределительный вал, снабженный кулачками, приводящими в движение масляный насос, связанный с форсункой, которая осуществляет подачу микродозы машинного масла в момент достижения поршнем верхней точки в цилиндре, характеризующийся тем, что при нахождении поршня в нижней точке происходит подача кослородно-воздушной смеси из кислородного баллона (патент РФ 2052149, опубл. 10.01.1996).

Недостатками известного двигателя являются низкий кпд и высокая токсичность отработавших газов.

Техническим результатом является повышение кпд и снижение токсичности продуктов сгорания.

Поставленная цель достигается тем, что в кислородно-масляном двигателе, содержащем аналогично двухтактному двигателю один или несколько цилиндров с впускными и выпускными клапанами, поршнем, кинематически связанными с коленчатым валом, приводящим во вращение при помощи шестерен распределительный вал, снабженный кулачками, приводящими в движение масляный насос, связанный с форсункой, которая осуществляет подачу микродозы машинного масла в момент достижения поршнем верхней точки в цилиндре, при нахождении поршня в нижней точке происходит подача кислородно-воздушной смеси из кислородного баллона и воздушного фильтра, при этом пополнение кислородно-воздушной смеси осуществляется при запуске из кислородного баллона, а в рабочем состоянии — через компрессор, находящийся в камере с набором молекулярных сит и модулей мембран, очищающих атмосферный кислород от азота, поэтому под давлением в качестве топлива используются молекулы углерода машинных масел, сгорающие с выделением большого количества тепла, при этом процесс горения углеводородов машинных масел перерастает под большим давлением в камере сжатия до уровня взрыва в кислородно-воздушной среде.

Изобретение поясняется при помощи чертежей.

На фиг.1 изображена схема кислородно-масляного двигателя.

На фиг.2 изображена схема размещения узлов, обеспечивающих очистку воздуха от азота и подачу кислорода для пополнения кислородного баллона и к впускному коллектору.

Кислородно-масляный двигатель содержит аналогично двухтактному двигателю один или несколько цилиндров с впускными 1 и выпускными 2 клапанами (см. фиг.1), поршнем 3, кинематически связанными с коленчатым валом 4, который приводит во вращение при помощи распределительных шестерен распределительный вал 5, снабженный кулачками 6. Кулачки 6 приводят в движение масляный насос 7, связанный с форсункой 8, которая осуществляет подачу микродозы машинного масла в момент достижения поршнем 3 верхней мертвой точки в цилиндре 9. При нахождении поршня 3 в нижней мертвой точке происходит подача кислородно-воздушной смеси из кислородного баллона 10 и воздушного фильтра 11. При этом пополнение кислородно-воздушной смеси осуществляется при запуске из кислородного баллона 10, а при устойчивой работе двигателя, т.е. в рабочем состоянии — через компрессор 17 (фиг.2), находящийся в камере 13 с набором молекулярных сит 14 и модулей мембран 15, очищающих атмосферный кислород от азота. Компрессор 17 в автоматическом режиме, при открытом воздушном кране (фиг.1), пополняет баллон 10 через трубу 18 кислородом, израсходованным при запуске, и питает кислородно-воздушной смесью кислородно-масляный двигатель 20 (фиг.2). В качестве топлива используются молекулы углерода масел.

Воздух через набор решет и молекулярных сит 14 обогащается кислородом. При этом происходит только частичная обработка воздуха. Затем он попадает в камеру 13 (фиг.2), в которой установлены модули 16 мембран, где происходит основная очистка кислородно-воздушной смеси. При этом отсортированный азот сбрасывается в атмосферу из мембраны модуля 16 по сбросному патрубку 22.

Кислородно-воздушная смесь, проходя по пути к компрессору 17 через модули 16 мембран, еще больше обогащается кислородом, а излишки азота в разделительной камере модуля мембран перед входом в компрессор сбрасываются в атмосферу через сбросной патрубок 22. Полученный из воздуха и поступивший обратно в атмосферу азот не оказывает никакого вредного воздействия на окружающую среду по сравнению с набором соединений азота, получаемых в прототипах при сжигании нефтепродуктов, в процессе которого еще выделяется много углекислого газа.

Процессы сжатия, впуска, расширения и выпуска аналогичны процессам, существующим в ДВС, кроме процесса сгорания. Вместо него происходит цепная реакция, где почти в чистом кислороде происходит разрушение на энергетическом уровне электронов углерода машинных масел. Недостатком кислородно-масляного двигателя является высокое давление в камере сжатия, т.е. степень сжатия повышается. К тому же рабочий ход поршня из верхней точки в нижнюю в момент цепной реакции потребует более прочной конструкции головки блоков и цилиндров двигателя. Кроме того, для гашения взрыва на минимальном уровне зарождения цепной реакции в камере сжатия потребуется подача смеси кислорода с воздухом, осуществляемая практически в ручном режиме, в период проведения первичных экспериментов.

В отличие от существующих прототипов, в кислородно-масляном двигателе процесс горения углеродов машинных масел перерастает под большим давлением в камере сжатия 19 до уровня цепной реакции в кислородно-воздушной среде.

Наличие в атмосферном воздухе азота при сгорании дает пять соединений (N 2 O; N 2 O 2 ; N 2 O 3 ; N 2 O 4 ; N 2 O 5 ), где количество кислорода, приходящегося на одно и то же количество азота, относится как простые целые числа 1:2:3:4:5 соответственно. Учитывая то, что азот является инертным газом, все реакции кислорода с азотом проходят с поглощением энергии, поэтому расчетная дозируемая подача чистого кислорода и воздуха через впускной коллектор 15 позволит найти искомый устойчивый режим работы кислородно-масляного двигателя, который прокручивается на стенде с помощью электрического мотора в безопасных условиях полигона, где при испытаниях надежно защищены люди.

Выделение энергии контролируется дозированной подачей чистого кислорода из баллона 10 через редуктор 12 во впускной коллектор 15 через трубопровод высокого давления 18 (см. фиг.1). Гасителем большой энергии взрыва является инертный газ азот, поступающий с воздухом в камеру сгорания 19 через воздушный фильтр 11 (фиг.1). Отработанные газы сбрасываются через выпускной коллектор 21.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Кислородно-масляный двигатель содержит аналогично двухтактному двигателю один или несколько цилиндров с впускными и выпускными клапанами, поршнем, кинематическим связанными с коленчатым валом, приводящим во вращение при помощи шестерен распределительный вал, снабженный кулачками, приводящими в движение масляный насос, связанный с форсункой, которая осуществляет подачу микродозы машинного масла в момент достижения поршнем верхней точки в цилиндре, характеризующийся тем, что при нахождении поршня в нижней точке происходит подача кислородно-воздушной смеси из кислородного баллона и воздушного фильтра, при этом пополнение кислородно-воздушной смеси осуществляется при запуске из кислородного баллона, а в рабочем состоянии — через компрессор, находящийся в камере с набором молекулярных сит и модулей мембран, очищающих атмосферный кислород от азота, поэтому под давлением в качестве топлива используются молекулы углерода машинных масел, сгорающих с выделением большого количества тепла, при этом процесс горения углеводородов машинных масел перерастает под большим давлением в камере сжатия до уровня взрыва в кислородно-воздушной среде.

Закись азота — не топливо. Закись азота — удобный способ прибавить дополнительный кислород для сжигания большего количества топлива.

Что такое закись азота?

Теория
Оксид азота — бесцветный газ, не имеющий запаха, состоящий из двух атомов азота и одного атома кислорода (N2O), в котором вес кислорода составляет 36%, что значительно больше чем в воздухе. Это позволяет смеси гореть с выделением большой температуры.
При температуре 0 ‘С и давлении 40 атм. закись азота сгущается в бесцветную жидкость. Из 1 кг жидкой закиси азота образуется 500 л газа.

Не воспламеняется, но поддерживает горение. Закись азота при вдыхании не вызывает раздражения дыхательных путей, с гемоглобином не связывается. После прекращения вдыхания через 10-15 минут полностью выделяется через дыхательные пути. Чтобы отделить молекулы кислорода от молекул азота, нужна очень высокая температура. Химическая реакция горения оксида азота, происходящая в камере сгорания, отличается от горения чистого кислорода, который горит очень быстро и неуправляемо.

Молекулы азота замедляют реакцию на столько, чтобы сделать впрыск кислорода управляемым. Чистый кислород слишком бы сильно детонировал. Дополнительный кислород повышает уровень горения в цилиндре, заставляя смесь гореть быстрее и "жарче". Этот процесс, в свою очередь, развивает большее давление в цилиндре и как результат — повышение мощности. Как уже было сказано оксид азота это газ. Соответственно для использования его в автомобиле, он должен быть упакован в цилиндр под высоким давлением (900-1000psi), которое позволяет превратить газ в жидкость и сделать его портативным.

Попадая в камеру сгорания закись азота возвращается в свое газообразное состояние и при этом охлаждается до -51 °с. Проходя по воздуховоду этот дико холодный газ охлаждает воздух идущий в цилиндр. Когда смесь охлаждается, она становится плотнее, позволяя добавить больше бензина. Таким образом, холодная, густая рабочая смесь позволяет вытягивать еще большее число лошадей из движка так как от уменьшения температуру в камере сгорания на 10°с мы получаем прирост в лошадях на 1%, а это значит, что при понижении температуры на 50°с в 300 сильном двигателе мы получаем аж 30 коней, (и это еще не сам нитроксид), что в общем-то не плохо.

Практика
На сегодняшний день использование систем закиси азота для моментального увеличения мощности двигателя — единственная возможность для большинства гонщиков. Причем речь идет не только об узкоспециализированных гоночных машинах. N20 можно рассматривать как вариант для большинства пользователей, кто хочет получить большую отдачу от своего мотора, используемого в повседневных поездках.
На сегодняшний день, компании, специализирующиеся в производстве систем повышения мощности на основе N20, предлагают внушительный список оборудования высочайшего качества. Эти системы достаточно просты и надежны в установке и эксплуатации.

Перед тем как Вы задумаетесь КАК оттюнинговать свой двигатель, вы должны понимать, что в результате двигатель вашего автомобиля/мотоцикла будет выдавать всю свою потенциальную мощность. Вы должны ответить себе на два вопроса: как часто и насколько долго вы будете заставлять свой двигатель работать на пределе; какая система повышения мощности наиболее приемлема для вас в удобстве и управлении.

Если вы подходите к вопросу с точки зрения "доллар за лошадиную силу", вы придете к решению, что система закиси азота дает максимальную отдачу за каждый доллар ваших вложений при минимальном изменении двигателя.

Двадцатилетний мировой опыт использования N20 доказал возможность прибавки мощности от 10 до 200 лошадиных сил для серийных автомобилей, без кардинальной переделки двигателя. С тщательно выбранной, правильно настроенной системой, вы будете уверены в увеличении мощности при сохранении надежности, что можно сравнить только с увеличением объема вашего двигателя.

Как повысить мощность?
Двигатель функционирует сжигая топливо, которое в момент вспышки в камере сгорания создает избыточное давление, толкая поршни вниз. Хотите добиться большей мощности — сжигайте большее количество топлива. При этом будет высвобождаться более количество энергии, а, соответственно, с большим усилием толкать поршни вниз.

Звучит довольно просто. Но это не настолько просто сделать. Имеются разные факторы, влияющие на увеличение мощности двигателя. Мы рассмотрим три самых основных:

Любое топливо требует для горения кислород. Если вы хотите сжечь большее количество топлива, вы должны также включить в состав смеси большее количество кислорода. Фактически все схемы увеличения мощности двигателя работают на основе увеличение потока топлива и кислорода. Распредвалы, клапаны и карбюраторы большего диаметра, впускные и выпускные каналы, их расположение и качество обработки поверхности, нагнетатели и турбокомпрессоры, закись азота — яркие примеры тюнинга двигателя позволяющего большему количеству кислорода сжигать большее количество топлива, что и дает вам увеличение в мощности. Системы впрыска закиси азота, вероятно, наиболее эффективный способ увеличить поток кислорода, а соответственно и топлива в двигатель. Это основная причина, по которой N20 системы дают такое большое увеличение мощности по сравнению с другими способами. Другой основной фактор повышения коэффициента мощности — испарение топлива. Бензин (как и другие используемые в гонках топлива) не будет гореть в жидком состоянии в замкнутом пространстве камеры сгорания. Топливо должно быть превращено в "пар" (смесь топлива с воздухом) для наилучшего сгорания. Это достигается термомеханическим способом в карбюраторах, либо прямым инжекторным впрыском. Температура двигателя и механическое распыление — ключи к ускорению испарения. Обработанное термомеханическим способом, распыленное топливо превращается в крошечные капельки, которые быстро испаряются в камере сгорания до момента полного сжатия. Размер топливных капель очень важен. Топливо, подающееся в камеру сгорания должно состоять из капелек, размером в десятки раз меньше обычной капли бензина. Третий фактор повышения мощности, который мы рассмотрим — воздух (качество смеси). Попробуйте бегать на вершине 10,000 метров в горах. Вы очень быстро задохнетесь, выбьетесь из сил из-за нехватки кислорода. Почему? Потому что воздух более разряжен, менее насыщен кислородом, его давление меньше, чем на уровне моря. Сила воздействия атмосферного давления, температура воздуха и его влажность — крайне важны для работы двигателя. Мы не можем повлиять на окружающую среду, но мы можем до некоторой степени регулировать качество смеси на входе. Мы охлаждаем топливную смесь, чтобы сделать ее более плотной до подачи в двигатель. И чем более плотной будет смесь — тем больше ее наполнение топливом и воздухом, что дает дополнительную мощность. Подающаяся в состав смеси в виде сжиженного газа, закись азота приводит к ее немедленному охлаждению, т.к. температура испаряющегося сжиженного газа всегда на несколько порядков ниже температуры окружающей среды. Кроме всего прочего, задача систем закиси азота состоит в том, что бы повысить плотность подаваемого топлива минимум на 65% по отношению к стандарту. Более плотная смесь, подающаяся в двигатель, даст большую дополнительную мощность в сочетании с N20.

Чем закись азота является и что она дает двигателю?
Для двигателя закись азота можно себе представить как более удобную замену стандартной атмосферы.

Так как мы заинтересованы в повышении содержания кислорода в атмосферном воздухе, закись азота дает нам простой инструмент для управления тем, сколько кислорода будет присутствовать когда вы даете двигателю дополнительное топливо чтобы высвободить большее количество мощности.

Закись азота — не топливо. Закись азота — удобный способ прибавить дополнительный кислород для сжигания большего количества топлива.

Если вы прибавляете закись азота и не прибавляете дополнительное топливо, вы только ускоряете скорость с которой ваш двигатель сжигает топливо, которое он обычно использует. Это приведет лишь к деструктивной детонации. Энергия — спутник топлива, а не N20. Закись азота позволит вам сжечь большее количество топлива в том же самом интервале времени. Как результат — огромное увеличение общей высвобождаемой энергии, полученной от топлива для ускорения вашего автомобиля/мотоцикла.

В закиси азота нет никакого волшебства. В действительности, использование N20 принципиально не отличается от использования карбюратора большего сечения, лучшей системы трубопроводов, нагнетателя или турбокомпрессора.

Воздух, который используете вы и ваш двигатель, "сделанный" на уровне моря, содержит:
— азота 78 %;
— кислорода 21 %;
— и только 1 % — другие газы.

Закись азота сделана на основе двух крупнейших составляющих земной атмосферы и содержит две молекулы азота и одну молекулу кислорода.

Когда закись азота подается в двигатель, теплота сгорания разрушает химическую связь N20, снабжая ваш двигатель большим количеством кислорода. А молекулы азота не дают смеси взрываться и детонировать двигателю. Все гоночные двигатели функционируют по тем же принципам: большее количество воздуха (лучшая сбалансированность, наддув, турбокомпрессия или N20) плюс большее количество топлива в более плотной смеси приводит к большему количеству мощности.

Соотношение цена — качество
Сейчас на рынке тюнинга предлагается огромное количество разнообразных систем, которыми может воспользоваться потребитель.

Раньше вы могли потратить тысячи долларов на тюнинг смесеобразования (карбюраторы, инжекторы), системы трубопроводов, клапаны и насосы, выхлопные системы, поршни, доводку/переработку каналов, наддув или турбокомпрессоры, чтобы получить то же самое повышение мощности, которую обеспечит система закиси азота за несколько сотен долларов. Но это не означает, что бесполезно будет установить эти части совместно с нитросом.

Если вы установили систему N20 и решили идти дальше по пути увеличения мощности своего двигателя, все, перечисленные выше, механические системы тюнинга становятся для вас актуальны. Мы рассматриваем нитрос, как лучший выбор для тех, кто не хочет сразу тратить большое количество денег, но при этом хочет добиться существенного увеличения мощности двигателя.

Необходимо отметить еще один аспект проблемы. Весь механический тюнинг подразумевает непосредственное механическое вмешательство в работу двигателя, переделку его узлов и агрегатов. Это, в свою очередь, снижает ресурс двигателя, либо ведет к очень дорогостоящим заменам таких частей, как блоки цилиндров, поршни, шатуны, коленчатый и распредвалы, клапаны и т.д.

Система закиси азота дает "власть над мощностью по требованию" — это одно из основных преимуществ N20, т.к. включается по требованию пользователя. Все остальное время — двигатель работает в своем обычном режиме без дополнительных нагрузок и выработок топлива. Таким образом, мы пришли к еще одному заключению — экономичности этих систем.

По системам закиси азота нужно еще отметить следующее:

• Целостность.
За любой нитрос системой стоят годы разработок и испытаний. Если утверждается, что система способна к повышению мощности для данного двигателя на 100 лошадиных сил, то потому, что это подтверждают серьезные испытания. Если вы следуете рекомендациям производителя и не доверяете инсталляцию системы непрофессиональным механикам, вы получите качественный результат.

• Качество.
В продаже имеется много систем, которые делаются для ежедневного использования. Все они проверяются на сложных измерительных стендах с моделированием практических условий использования для конкретного двигателя. Предъявляются высокие требования к технологиям, условиям производства и обслуживания этих систем. В этом залог качества и успешной эксплуатации.

Не следует использовать на стандартных двигателях специализированные гоночные системы без специальной доработки этих двигателей специалистами тюнинговых ателье имеющих богатый практический опыт в тюнинге двигателей.

• Опыт.
Системы закиси азота производятся в течение более чем двадцати лет. Их надежность базируется на ежедневном изучении успехов так же, как и неисправностей. Эти знания затем и применяются в производстве. Даже если сегодня вы решили в первый раз установить одну из N20 систем, будьте уверены, что за ней стоит более двадцати лет опыта производящей компании.

Закись азота и экология
Использование закиси азота (N20) не обязательно увеличивает в выхлопе оксиды азота (NOx), которые загрязняют воздух.

Использование некоторых предлагаемых систем (за исключением специализированных для гонок) юридически не законны для использования на двигателях стандартных автомобилей и мотоциклов в большинстве государств. Однако некоторые системы получили сертификаты на использование в пятидесяти государствах. Тесты, проведенные независимыми лабораториями доказали, что эти системы не увеличивают количество вредных веществ в выхлопных газах. Все же, мы рекомендуем использование только юридически законных систем закиси азота для использования на двигателях ежедневной эксплуатации.

Типы систем закиси азота
Два наиболее популярных типа подачи смеси в системах закиси азота: стальная специальная пластина с каналами впрыска, типа Powershot. Разделительная плита, монтируемая между карбюратором и подающим коллектором — порт для прямого впрыска закиси азота и дополнительного топлива непосредственно в подающий коллектор; система специальных инжекторных форсунок, подающих N20 и дополнительное топливо непосредственно в камеру сгорания (работает параллельно стандартной системе подачи смеси). Эти системы могут подавать огромные количества N20 с дополнительным топливом при равномерном распределении смеси для каждого цилиндра. Системы прямой подачи смеси в камеры сгорания дают более 500 дополнительных лошадиных сил для некоторых специально подготовленных гоночных двигателей. Системы прямой подачи, как правило, требуют замены стандартных топливных жиклеров на тюнинговые (большей проводимости) для регулирования объема подаваемого топлива.

Настройка вашей системы. Несколько важных моментов
Чтобы избежать неисправностей, а так же правильно рассчитать мощность необходимой вам системы и задать управляющие команды прочтите сопровождающую литературу или обратитесь к специалистам!

Всегда начинайте с малого. Если Вы приобрели регулируемую систему — запустите ее с самой малой мощности. В предлагаемых системах требуется очень мало времени, что бы вывести мощность мотора до максимума. Снизьте ненужные риски — не начинайте тесты системы на предельных мощностях.

Будьте реалистичнее по отношению к вашему двигателю. Проконсультируйтесь у специалистов какова максимально возможная нагрузка для вашего двигателя.

Только вы знаете точно, что находятся в вашем двигателе и какого это качества. Если Вы не уверены в надежности каких либо его частей — консультируйтесь у специалистов.

Если вы знаете, что внутри вашего двигателя нет тюнинговых запчастей, то вы находитесь в наиболее выгодной ситуации, принимая во внимание, что все изделия являются заводскими с достаточным запасом ресурса.

Мощность — спутник топлива. Дополнительная мощность регулируется количеством дополнительного топлива подаваемого в двигатель, в то время как задействована нитрос-система. Если количество топлива не согласовано с количеством N20, вы не получите желаемого результата.

Имеется два средства управления количеством подаваемого топлива — размер топливного жиклера и топливное давление.

Надо помнить, что правильное топливное давление считывается манометром, только во время работы системы. Некоторые топливные регуляторы давления дают ложные показания. Как правило, фактическое топливное давление будет ниже, чем показатель стандартного манометра и может вызывать проблемы. При наладке нитрос-системы ориентируйтесь на показания манометра, которым укомплектована ваша система.

Нитрос имеет уникальное свойство очистки свеч зажигания до состояния, как будто вы только их установили. Если имеются любые знаки детонации типа крошечных налетов серебра или черных пятен, осажденных на фарфоре свечи — надо регулировать давление подачи N20. Если жало свечи зажигания окрашено синеватой "радугой" — надо регулировать давление подачи N20. Если вы увидите признаки плавления жала — надо регулировать давление подачи N20 и заменить свечи зажигания, поставив их с более короткой юбкой и более толстым жалом.

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Читайте в этой статье

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода на полном баке водорода составляет около 300 км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.

Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.

Что нужно знать о моторах на Рендж Ровер перед покупкой такого автомобиля б/у. С каким двигателем лучше взять данный автомобиль и почему.

Классы МПК: F02B3/06 с самовоспламенением
Патентообладатель(и): Рябчуков Александр Андреевич (UA)
Приоритеты:
Ссылка на основную публикацию
Adblock detector